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 The spatiotemporal dynamics of an alien species invasion across a real landscape are 
typically complex. While surveillance is an essential part of a management response, planning 
surveillance in space and time present a difficult challenge due to this complexity. We show here a 
method for determining the highest probability sites for occupancy across a landscape at an arbitrary 
point in the future, based on occupancy data from a single slice in time. We apply to the method to the 
invasion of Giant Hogweed, a serious weed in the Czech republic and throughout Europe. 

surveillance; range expansion; alien invasive species; spatial modeling; approximate 
Bayesian computation; simulation. 

 
 

Predicting the areas into which an invasive species is likely to spread, and the timing of that spread, are 
critical elements of managing an invasion. Mathematical models for predicting spread in homogeneous 
space have existed for some time (Skellam 1951). Predicting spatial dynamics in the real world is much 
more difficult however, due to the underlying heterogeneity in the landscape across which invasions 
occur. Factors such as topography, the spatial distribution of hosts and other resources elements of 
habitat suitability all contribute to complexity that can be challenging to model. 

Although simulation using cellular automata (CA) allows for the incorporation of complexity and thus 
presents a way forward, the data needed to parameterise a CA can be difficult to acquire, particularly 
since the dynamics of the invasive species may be different in its new range. Rasmussen and Hamilton 
(2012) presented a method to estimate the parameters of a range expansion using a snapshot of data 
using Approximate Bayesian Computation (ABC). 

In this paper we demonstrate a probabilistic spatial model that can be used to predict the highest 
probability areas for occurrence of an invasive species across a heterogeneous landscape. The model 
is applied to the spread of Hogweed ( ) in the Czech republic, a serious 
weed of major concern (Pyšek et al. 2012). 
 

 
 
The range expansion model used in this study is similar to the model presented in Rasmussen and 
Hamilton (2012). The expansion model here has been implemented in concert with ABC to approximate 
the parameters of the expansion model, given point-in-time abundance data of a target species (see 
Rasmussen and Hamilton, 2012). In this model the number within each cells of the CA was used to 
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characterise the abundance of Hogweed within a geographical region represented by the cell. The CA 
operated over a grid of equally sized square cells, where each cell (x,y) involved the following 
components: 

1. P(x,y) evaluated an abundance of Hogweed on the region of the cell at ( ) at time . 
2. K(x,y) evaluated the carrying capacity as the maximum abundance of Hogweed that could 

occupy the region of the cell ( ) 
3. H(x,y) evaluated habitat suitability as the probability of establishment in the region of a cell 

( ). 

The model involves two traversals over the set of cells at each time step . The first traversal generates 
dispersal patterns of Hogweed, whereas the second traversal computes the growths and decays of 
Hogweed populations. In each first traversal, the model applies a dispersal rule on populated cells to 
generate dispersals to target neighbouring cells, where a random chance of establishment is determined 
a probability (H( )). This dispersal rule involves a combination of short and long-distance dispersals. 
The model then applies a logistic growth update on all of the populated cells. After a predefined number 
of time steps, the range expansion model returns a dispersal pattern as a set of abundance values 
distributed over a grid. A deeper discussion about this model can be found in Rasmussen and Hamilton 
(2012). The parameters of interest in our analysis are given in Table 1.

. Parameters used in the forward simulation model. These parameters can be estimated with 
ABC using the method presented by Rasmussen and Hamilton (2012). 

 

 

Approximate Bayesian Computation (ABC) belongs to a family of likelihood-free Bayesian inference 
programs that attempt to approximate the posterior densities for problems where the measures of 
likelihood are  unknown (Marjoram , 2003). ABC can be a sufficient solution to complex 
problems where a full-likelihood method is prohibitive (Beaumont , 2002).  

For our problem concerning a range expansion model, we consider a model , where  is 
the simulated data. An ABC program may be applied to estimate the posterior density  for a 
parameter  and some observed data . The Bayesian formula for the problem is:  

  (1) 

Where  is the ,  is the  and  is the evidence of the parameter . Since 
 sums to a scaling constant, Equation (1) can be reduced to a proportionality:  

  (2) 

ABC programs involve an ideal constraint  to filter some rare parameters  from a 
sufficiently large random sample, on the condition that simulated data from  satisfies the constraint. 
Here the distance metric  is Euclidean over the dimensions of the observed and simulated data, 
and  approximates the likelihood . The output of an ABC program are the 
, because the  and can be used to approximate the posterior.  

Element Description 
 The number of time steps (years) since invasion. 
 The -coordinate of the initial population. 
 The -coordinate of the initial population. 

 The initial population size. 
 The intrinsic rate of population growth. 

 The probability of migration. 
 Probability of long distance dispersal. 

 The standard deviation of the long-distance 
dispersal kernel. 
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Hogweed data for a 2.5 x 2.5 km region (Figure 1) were collected in the Czech republic (see Mullerova 
et al 2011 for details). We used the 2006 time slice for experiments. The dataset involved categorical 
evaluations of hogweed within the cells of an 800x800 grid spanning the study region. We configured 
this a 200x200 grid. Grid cells were 10x10m, with abundance estimated by proportion of the grid cell 
covered by hogweed. 

The landscape was classified using a landscape suitability model (1=most suitable, 2-least suitable, 3- 
uninhabitable), and converted to a probability of establishment as: 

(3)

where A was set to  so that  when  and  when . Given this assumption, the 
establishment probability for each -meter cell was computed as the average of the establishment 
probabilities found for the enclosed -meter cells and their suitability categories, using this 
formula.

. The study region around Prameny in the Czech Republic. The point inside the red circle 
shows the point of invasion of Hogweed in the region estimated using the method presented by 

Rasmussen and Hamilton (2012)(Google maps, retrieved March 2014, URL: https://Maps.google.com) 

 
The forward expansion model is configured to simulated from an existing spatial population distribution 
with known abundances, forward in time for a given number of time steps ( ) across a heterogeneous 
landscape. Forward simulations of the expansion model require prior knowledge of the model’s 
parameters for a given species and habitat, along with a habitat suitability model and an initial dispersal 
pattern. We used ABC to arrive at a large parameter sample that specify the most likely model 
parameters for hogweed in the study region. The time since invasion was estimated but is not presented 
here since it was not used as input for the forward simulation. We specified a number of time steps (F
) and drew parameters at random from the parameter sample to inform a large number of forward 
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simulations. For each F  considered, the forward simulations generate a large set of dispersal patterns 
that each represents a possible future pattern. The average of these dispersal patterns shows the most 
likely dispersal pattern expected for the region. 

The forward simulation experiment was set up to sample parameters from the posterior distributions of 
the ABC results. The 2006 dispersal pattern was used as the starting pattern and expansion fronts were 
predicted using forward simulations to 2015. These expansion fronts were predicted based on the 
average map derived from 10,000 simulated dispersal patterns for each prediction year. Prediction maps 
are shown in Figure 2.

 
 

3.1 ABC priors and results 

. Prior bounds and results for the ABC experiment (SD-standard deviation of the posterior 
distribution) used as input for the forward simulation experiment 

 
Parameters Prior Bounds Posterior Mean SD 

 0-199 cells 39 23.4 
 0-199 cells 66 20.9 
 0-0.5 0.204 0.045 

 0-1 0.2 0.105 
 0-1 0.21 0.117 

 1-1000m 447 m 84.3 
 

 
 
The expected occupancy of Hogweed in the study region for the year 2015 is shown in Figure 2. Note 
the relatively restricted high probability occupancy area for 2015, which would serve as an appropriate 
surveillance space for this region. In contrast, the large area grey shaded region shows projected areas 
of low probability Hogweed occupancy in the projected time period. Surveillance in these areas is 
unlikely to detect Hogweed in any region will be determined not only be decision support tools such as 
that presented here, but also by budget, cost of surveillance and other factors that may impact on 
management decisions.  
  
Given the projection past the current date, no empirical validation could be conducted at this stage.  
 

 
We have demonstrated here a powerful method in which data from a single point in time can be used 
to estimate the occupancy of an invasive species at an arbitrary point in time in the future. The results 
shown in Figure 2, for example, present the most likely expansion future for Hogweed in this region 
taking into account the spatial dynamics and the underlying heterogeneity in the region. Consequently 
this could be used to define the surveillance space for Hogweed to better plan and prioritise areas for 
management. 

Using ABC in association with forward simulation presents an effective method for estimating the most 
like parameters of the range expansion and using them to forward simulate across a landscape. The 
advantages here are notable, since while external information can be used (in the form of prior 
information to limit the possible range of the parameters), it is also possible that the spatial dynamics of 
the invasive species will be different in a newly invaded environment. Consequently, the use of existing 
data from the invaded range in the analysis helps to limit any possible bias.  
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. The estimated occupancy of Hogweed in 2015. The scale shows the probability of 
occupancy calculated as the proportion of times over 10,000 forward simulations that the cell is 

occupied. 

The capture of data for invasive species presents challenges in its own right. We note here the possibility 
for capturing data using new technologies such as Unmanned Aerial Systems (UAS) at a regional scale. 
Notably, however, while these methods have generated much excitement, reliable methods to make 
use of the data for management will still be required. The generic nature of the approach presented 
here, which allows for the data to be interpreted more easily, should be sought after as the capacity to 
gather data easily increases.       

The method should work well for established species of concern for which there are sufficient data. 
However as with any Bayesian method, the precision of results will in part depend on the availability of 
data in combination with the information that can be introduced through the priors. For newly detected 
species, such as would occur in a biosecurity response, the strength of the analysis may initially be 
limited, only improving as more data become available. For this, it may be useful to use an alternative 
and more generic analysis initially, introducing the method presented here as more information becomes 
available. Nonetheless, this method present a useful step forward in better defining the surveillance 
space in space and time for invasive species. 
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